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A granular medium differs from a perfectly plastic medium by the presence of internal 
friction. In the limiting state, the maximum tangential stress r is related to the normal 
stress by Coulomb's condition 

= (h ~-(~ sin p-~- k c o s  p, (i) 

where p is the angle of internal friction; k is the cohesiveness; ~:,~2 are the principal 
stresses. Condition (i) closes the equations of equilibrium. This permits stating and 
solving statically determinable problems. A perfectly plastic medium is obtained as a par- 
ticular case for p + 0. The system of equations of equilibrium with (i) is a hyperbolic 
system [i]. As in any classical model, there is great interest in seeking exac~ solutions, 
which can be represented in closed form and investigated completely. One of the fundamental 
exact solutions is a solution in the form of a centered wave [I, 2], obtained as the limiting 
case of solutions in which one of the families of slip lines consists of straight lines. We 
shall look at this solution from a somewhat different point of view: we shall view the 
centered bundle of straight characteristics as radii of a polar system of coordinates. Then 
the solution is completely characterized by the single and very simple condition ~ ~ ~/2 -- 
0 = const, where ~ is the angle between the slip lines and the polar radius. This interpre- 
tation leads immediately to the idea of finding new solutions by generalizing the condition 

~ ~/2 -- 0 = const [3]. It is first necessary to derive an equation in which only the angle 
enters. (At least, it is known that 6 E ~/2 -- p will be the exact solution of this equa- 

tion.) 

The first question that arises in this case is: which two variables must be taken as the 
independent variables? Since the angle ~ relates the position of the slip lines and the polar 
radius, it is natural to choose the polar radii r and the angle e as the independent varia- 
bles. In this case, the well known exact solutions are obtained [4]. Another method in- 
volves transforming to characteristic coordinates X~, X2 and deriving an equation for 6 in 
these coordinates. The closed system in the variables X~, X= has the form 

Oct Oqo 0(~ __ 2(J sin p Oq) cos p o - ~  !.. 2a sin p ~ =: O, cos p ~ ~o  =: O, 

tg,q~ - ~ .... ~ ,  oz., tg ~, 4- ..~- ~ - / ~ ,  

(2) 

where q~ is the angle of inclination of the largest principle stress to the axis Oxl; o = 
(oi + ~2)/2 -- k cot p and x~ and x2 are Cartesian coordinates. 

Integrating the first two equations, we obtain 

where ~:,~2 are arbitrary functions. It follows from the definition of the angle 6 that 

dO 9tnr 90 ,)l___nnrr)~l = __ t g ( 5 - -  P)b-%~' -Jf]'.~ --: etg 5 ~ .  (4) 

If the arbitrary function ~(XI, X2) or ~(r, e) is fixed, then Eq. (4) will give some grid of 
lines X~, X2 with constant angle of intersection ~/2 -- p. Let us calculate at each point 
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the angle of inclination of the bisector between the lines X,, Xa relative to the Oxl axis. 
In order that this grid correspond to some stress distribution, it is necessary and suffi- 
cient that the angle of inclination of the bisector as a function of the coordinates X~, ~= 
have the form of a sum of some functions r +r It is easy to make use of the last 
condition due to the simple relation between the angles: 

Then, substituting expression (5) 
representation (3), we obtain finally 

0 =, ~p - -  8 - . ' , . . . ,  ,'--, ( 5 )  

for the angle ~ into Eq. (4), eliminating r, andusing the 

- -  i -q)~e ' ta(~> ..,s/ _. I). ( 6 )  

Then, the 
Its structure is such that it 

a~" In c o s ( p - -  6) (D; c) c t g 6  

This second-order nonlinear equation is equivalent to the starting system. 
problem reduces to searching for exact solutions of Eq. (6). 
admits a solution for which the leading term vanishes: 

cos ( p -  ~ ) / s i n  ~ . . . . . .  i~(;~,), .~(Z:),  

where g~1, 6= are arbitrary functions. 

From here we immediately find the angle d as a function of %~, 

5 = -- a r e t g  \ c o s p  ~ q-  t g  p ~ p, 

and from Eq. (6) 

. �9 _ - ' 1 ~ 2  ~ ( 7 3 "  

Xa:  

It is now possible to obtain from Eq. (3)-(5) a solution of the entire system in parametric 
form in terms of the characteristic variables: 

~ , ( 7 )  

, /  )' ! 
r - - = ~ , /  1-}- \coso~ ,.-i-t,gp exp (2~,~2-~ sin a (.~ i .~)) i c~ , 

where ci- c5 are constants of integration. 

We have thus obtained a class of exact solutions of the starting system in terms of 
elementary functions. It is evident that the characteristic variables enter here only via 
~:, ~a, so that the apparent enormous arbitrariness in the two functions in the representa- 
tion (7) merely represents the arbitrariness in the parametrization of the characteristics. 
Therefore, the variables ~i, $2 can be chosen as the parameters. Without loss of generality 
we can set c2 + c3 = 0, where these constants express the arbitrariness in choosing the ori- 
gin for measuring the angles; Cs = 0 and Ic:I = i, since the variation of these coordinates 
corresponds to a stretching transformation of the spatial variables and parameters ~i, ~a. 
We finally obtain two classes of solutions, corresponding to the value ci = +i or ci = --i. 
We shall examine further only the last case, since the solution with ci = + 1 is analogous. 

In order that the mapping (61, Sa) § (x:, x2) be one-to-one, it is necessary that k = 
~(r, 0)/~(~i, ~a)~ 0 everywhere in the region of variables (~i, ~2) mapped. On the strength 
of Eq. (2), the condition A = 0 is equivalent to (D0/~)(30/3~2) = 0. The line 30/~2 = 0 
is 

~2 cos p t g 'v 
2 "1 .-" siu p sin 2v ' 
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and t h e  line 3 0 / 8 ~ =  = 0 is 

~2 _ cos p c tg  v 
�9 2 t ~ s i n p s m 2 v "  

The lines are symmetrical relative to the bisector of the second quadrant. Here (~, ~) are 
polar coordinates in the plane of parameters (~:, ~=) (Fig. i). In addition, for the mapping 
to be one-to-one, the increment to the angle e in the region must be less than 2~. Figure 1 
shows the lines e = const in the (~i, ~2) plane. We note that the solutions that are symme- 
trical in the plane of parameters relative to the line u = ~/4 will be symmetrical relative 
to the Ox2 axis of the physical plane. Analogously, the solutions that are symmetrical rela- 
tive to the straight line v = 3~/4 in the physical plane will be symmetrical relative to the 

abscissa axis Oxl. 

It can also be shown that the line ~e/~ i = 0 (i = I, 2) in the (x~, xa) plane repre- 
sents the set of cusps of the i-th family of slip lines and the envelope of the other family. 
For this reason, if the line A = 0 is the boundary of the region being mapped, then the con- 
dition of limiting equilibrium, r~ = -- oa tan p+ k, where oa, ma, are the normal and tangen- 
tial stresses on the boundary, will be satisfied on it. 

Let us examine the image of the region OA4A=AsO (see Fig. i) in the physical plane (Fig. 
2). Here the increments to e are everywhere less tfian 2~. The image O'A4'A='As'O" has the 
form of a wedge angle ~/2 + p. The section of the boundary A~A~ is transformed with convex- 
ity upwards and the section A~O v is transformed with convexity downwards, and the solution 
is symmetrical relative to the Ox: axis. The condition of limiting equilibrium is satisfied 
on the boundary and at infinity ~ § O, o § --c4. 

e ~ l l ~  - -  ci(t - -  sin p) ~- k c t g p ,  eh~-- , -O,  ~ 2 - - > - - c 4  (i ~- sinp)-~- k c t g p .  
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The region H~H~H3H~ (see Fig. i), where H~H2 is the line e = e~ = const and H3H~ is the 
line 8 = 0~ = const, is mapped onto the wedge with angle e2--O~ and cut-out vertex (Fig. 3). 

The condition of limiting equilibrium is satisfied on the section of the boundary H'H' 2 9. 

This section, for abscissa points H:, H~ with sufficiently large modulus, is close to the 
arc of a logarithmic spiral, which approaches the arc of a circle for p § 0. 

We shall now examine the region A2E~E2E3E~A2 (see Fig. i). Here E!E= is the line 0 = 
--~/2 and E3E4 is the line 6 = 7/2. The solution represents the half-plane with a cut-out 

E,A,=, (Fig. 4) and the .section of the boundary ~ 2~ is the envelope of the slip lines. The sides 
E'A' A '=' of this section i = and =~ bound regions shaped like little horns, bounded on the outside 

by the envelope and the inside by the slip line. Similar solutions (according to Hartman) 
for the case of perfect plasticity (0 = 0) are described in [5]. 

At the point A;, the boundary of the region has a break of magnitude 7/2 + p. The 
='A'E' maximum tangential stress is reached on the section ~i 2 4. At infinity 6 § p/2 + ~/4, 

~§ 0, O § -- oo. 

Finally, we shall examine the mapping of regions in the first quadrant, where A =/= 0 
everywhere. Only a single condition remains: the increment to e in the region must be less 
than 2~. Let the region OKzKsK20 (see Fig. i), whose boundaries are the lines e = const, be 
the region being mapped. Evidently, this region is mapped onto a wedge. At infinity o § 
-- c~, cp § 0--~/2. 
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